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SUMMARY

Soft computing techniques of neural networks and genetic algorithms are used in the design of super-
alloys. The cyclic oxidation attack parameter K a, generated from tests at NASA Lewis Research Center, is modelled
as a function of the superalloy chemistry and test temperature using a neural network. This model is then used in
conjunction with a genetic algorithm to obtain an optimized superalloy composition resulting in low Ka values.

INTRODUCTION

In this report we show the results of research involving application of soft computing techniques to
modelling and optimizing alloys. In the design and manufacturing of advanced materials such as superalloys, a
material possessing desired output properties is a requirement. These properties can be expressed as a function of
material composition and parameters of the fabrication process. Optimizing the composition of a material can be
broken into two problems: finding the function between inputs, such as material composition and process parame-
ters, and outputs such as strength and density, and then optimizing that function. Such functions are usually highly
nonlinear and difficult to find. Moreover, the properties of the superalloys are very sensitive to the process fabri-
cation parameters such as temperature, pressure, and so forth. For those reasons we have used neural networks to
learn the mapping function between the inputs and outputs.

Optimization can be defined as a process that seeks to improve performance of a system toward some
optimal point or a set of points. Local optimization techniques work well for problems that have relatively nice
search spaces and when the user has a good feel for the space. If that is not the case, global optimization techniques
of genetic algorithms are often used.

Barrett (ref. 1) used the data generated from tests at NASA Lewis Research Center to rank the Ni- and Co-
based superalloys for their cyclic oxidation resistance. The test results were reduced to a single "attack parameter"
Ka, and he used multiple linear regression analysis to derive an estimating equation for this parameter as a function
of the alloy chemistry and test temperature. This equation was then used to predict the K a values for similar alloys
and also for the design of an optimal superalloy composition.

Soft computing methods of neural networks, genetic algorithms, and fuzzy sets have proven to be useful
(ref. 2) where the conventional methods have limitations. In this work we use the techniques of neural networks and
genetic algorithms for modelling and optimization, respectively. The backpropagation neural network is used for
modelling and the GENOCOP genetic algorithm is used for optimization (see fig. 1). It will be shown that the neural
network modelling of Ka gives as good, or better, a fit as the linear regression model (ref. 1). Optimization of the
function learned by the neural network using the genetic algorithm (ref. 3) achieves low values for the Ka parameter.



Barrett's data (ref. 1) were used to train the backpropagation network to model the cyclic oxidation attack
parameter Ka as a function of superalloy composition. This trained network was then used as an objective function
(Ka) generator for an optimizer using a genetic algorithm (fig. 1).

In this report we shall briefly discuss the soft computing methods of neural networks for function approxi-
mation in the section FUNCTION APPROXIMATION and genetic algorithms for optimization in the section
OPTIMIZATION.

FUNCTION APPROXIMATION

Artificial neural networks are composed of many simple nonlinear processors called neurons connected in
parallel. Each neuron performs a computation of the following form:

oi = f(si) and s i =

where X = (x b x2 ..... Xn0 is the vector input to the neuron and W is the weight matrix with wij being the weight
(connection strength) of the connection between jth element of the input vector and ith neuron. The f0 is a nonlinear
function (usually a sigmoid), oi is the output of the ith neuron, and si is the weighted sum of the inputs.

Neural networks can learn from the input/output training data pairs. Once the training is completed, the
network can be used as a function simulator. The learning capability is a result of the ability of the network to
modify the weights through usage of a learning rule. The topology used here is the multilayer feed-forward network,
and the learning rule is backpropagation. A neural network with one hidden layer was used to simulate logl0(Ka) as
a function of the superalloy chemistry and test temperature. The network had 18 nodes in the input, 36 nodes in the
hidden layer, and one in the output layer. The superalloys used in the test were Ni- and Co-based and their composi-
tion was described by weight percent (wt %) of the components Ni, Co, Cr, AI, Ti, Mo, W, Cb, Ta, C, B, Zr, and Hf.
This data is shown in the Appendix.

Barrett's (ref. 1) fitting of the function using linear regression resulted in the value of R2 equal 84.43
percent. We achieved an R2 value of 86.56 percent on the same data. The Appendix shows the comparison of
regression and backpropagation results for the average values of the Ka parameter for the superalloys used. Different
results were obtained when multiple tests were conducted for some alloys (experiment repeated), and hence the
average values for comparison were used. The trained network was used to predict the Ka value for an alloy, not
included in the training data set, being exactly the same as used by Barrett. The results shown in table I are better
than the ones obtained from regression at both temperatures (1150 and 1200 *C). All values are log to the base 10 of
the Ka parameter.

OPTIMIZATION

Optimization can be defined as a search towards some optimal point. In most engineering systems attain-
ment of the optimum at any cost is not required, but instead what usually suffices is a "good" solution. Genetic
algorithms (ref. 4) have proved to be of considerable help towards achieving this goal. The genetic algorithms are

global optimizers used to overcome the limitations of many conventional methods like Bayesian/sampling, Monte
Carlo, Torn's, and simulated annealing (ref. 5).

The genetic algorithm (GA) is an evolutionary computation method useful in performing searches and
optimization. A GA involves a set of elements (x i ..... xn), called the population X(t) at time t. Each element xi
represents a possible solution and is represented by a string of variables. The standard GA is described as the
following sequence of steps (ref. 6):

Step 1: Randomly generate an initial population X(0) = ( Xl, x2 ..... xn)
Step 2: Compute the fitness f(xi) of each individual xi of the current population
Step 3: Generate an intermediate population Xr(t) applying the reproduction operator
Step 4: Generate X(t + 1) applying other operators to Xr(t)
Step 5: t = t + 1; if not (end_tes0 go to Step 2

where the most commonly used operators are reproduction, crossover, and mutation.

To improve the objective function value towards an optimum, the genetic algorithm only needs the function
values at the population points, and not the function itself. In this sense the algorithm is said to be blind. The
algorithm (ref. 3) uses probabilistic transition rules and random choice as a tool to guide the search towards a region
of a search space with likely improvement. The GA's also have the advantage of being able to optimize while



avoidinglocalminimaunlikegradient-descentmethods.TheGAmethodofoptimization is very different from
conventional methods and can be characterized by (refs. 3 and 5) the following differences:

- They directly use the code (i.e., the parameters)
- They search from a population of points instead of a single point
- They are blind to all auxiliary information
- They use randomized operators

The algorithm we have used for optimization is the GENOCOP (Genetic Algorithm for Numerical OPtimization)
developed at the University of North Carolina by Zbigniew Michalewicz. The GENOCOP system aims at finding a
global optimum (minimum or maximum) of a function subject to linear constraints (equations and inequalities). This
algorithm had been demonstrated to successfully optimize both linear and nonlinear functions. Even though the
algorithm is blind to the function, the functions were needed to generate the function values. We wanted the algo-
rithm to optimize an unknown function, which was simulated on a neural network. The programs were modified so
that the function values were generated by another program, developed at the University of Toledo, using the back-
propagation network.

The problem of designing a superalloy was broken down into two tasks: function approximation and
optimization. The backpropagation net was trained using available test data from the tests and thus functioned as a
simulator of the K a parameter. This generated K a was then used as input to the genetic algorithm, which searched for
points with minimum corresponding K a values. This search led to the results shown in table II. The search was
restricted to the temperature 1100 *C. The constraints used in finding an alloy composition were obtained from
NASA Lewis Research Center and are listed in table III.

The obtained results (see table II) indicate that the desired alloy belongs to group-II alloys (ref. 1), that is,
chromia/chromite formers. We think that this is a direct result of the given constraints. If a group-I alloy was to be

designed, we should have used a much closer range for Aluminum (A1) percent weight. We have used the 0 to 6
range (percent weight), but it can be noticed from reference 1 that for group-I alloys the range is 5 to 6. Given the
latter, the genetic algorithm optimization might have resulted in a group-I alloy.

The K a value for these newly designed alloy composition is 0.90918058, which puts the superalloy in the
category of fair according to Barrett's classification (ref. 1) in which the Ka values are ranked as

K a <= 0.20 excellent
0.20 <= K a <= 0.50 good
0.50 <= Ka <= 1.00 fair
1.00 <= Ka <= 5.0 poor
5.00 <= K a catastrophic

The lowest value of K a obtained in the actual tests at 1100 *C, for group-II alloys was 1.708 (U-700) (ref. 1). Thus
the soft computing methods have resulted in a design that can meet the requirement of low Ka values.

CONCLUSIONS

We have applied the soft computing methods of neural networks and genetic algorithm to the design of
advanced superalloys. The key feature of this approach is the use of the neural network for modelling the material
properties as functions of alloy chemistry and process parameters and the use of a genetic algorithm for optimizing
the function and thus obtaining a superalloy with low Ka values. The genetic algorithm used for optimization needs
only the objective function values which are provided as the outputs of the neural network. To summarize, the
following results were obtained:

1. The trained neural network (R2 = 86.56 percent) gives a better fit than the regression

(R 2 = 84.43 percent).
2. The predicted value for NASAIR-100 alloy is much better for the neural net model than the linear

regression model.
3. A new superalloy, of group-II, was designed using the genetic algorithm, with a Ka value of 0.9091 at

1100 *C, which is classified as fair (ref. 1). In test results used for modelling, none of this group of superalloys had
such a low Ka value.

Given different constraints these results could be most probably further improved.
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APPENDIX- NEURAL NETWORK TRAINING RESULTS

Alloy Temperature, Ka Ka Ka
*C (Observed) (Neural Net) (Regression)

Alloy-625

Alloy-625

Alloy-718

Alloy-718

Astroloy

Astroloy

B-1900

B-1900

B-1900

B- 1900-+-Hf

B- 1900-+-Hf

IN-100

IN-100

IN-100

IN-713-LC

IN-713-LC

IN-738

IN-738

IN-738

IN-792

IN-792

IN-939

IN-939

MAR-M-200

MAR-M-200-+-Hf

MAR-M-200-+-Hf

MAR-M-211

MAR-M-211

MAR-M-246

MAR-M-246

MAR-M-247

MAR-M-247

1100 28.71441 33.12075 11.27800

1150 36.42085 65.32808 17.99260

1100 28.56603 30.54570 36.16710

1150 43.39103 60.06204 69.82400

1100 3.23743 10.80936 9.13700

1150 61.72343 21.69202 21.93610

1000 0.05310 0.05354 0.01870

1100 0.19269 0.44463 0.31000

1150 1.68384 1.66802 1.08980

1100 0.72219 0.38940 0.32770

1150 1.10053 1.87759 1.15220

1093 28.49377 34.80566 1.86570

1100 46.06277 39.31424 24.30670

1150 97.48773 84.51817 76.63070

1100 0.71499 20.17901 0.94390

1150 1.67359 71.84557 2.66850

1000 1.69805 5.20595 3.12460

1100 29.32580 30.11619 19.59870

1150 37.93149 59.08810 44.55700

1100 22.54759 28.20979 19.20340

1150 50.10717 66.91138 52.25930

1100 32.58367 40.81313 30.14130

1150 55.37961 64.90826 49.41480

1150 74.25060 53.29665 47.77800

1100 17.31210 26.54911 16.17680

1150 64.41692 74.50749 53.85680

1100 73.45983 17.29419 11.60070

1150 57.18736 44.17740 38.62180

1100 1.55292 3.21440 0.83760

1150 18.07799 11.27847 2.50060

1000 0.05250 0.06792 0.04770

1100 0.50699 0.91254 0.77430



Alloy Temperature, Ka Ka Ka
°C (Observed) (Neural Net) (Regression)

MAR-M-247

MAR-M-421

MAR-M-421

NASA-TRW-VIA

NASA-TRW-VIA

Nimonic- 115

Nimonic- 115

NX-188

NX-188

Rene-41

Rene-80

Rene-80

Rene-120

Rene- 120

Rene- 125

Rene- 125

R-150-SX

R-150-SX

R- 150-SX

TAZ-8A

TAZ-8A

TAZ-8A

TRWoR

TRWoR

TRW-R

TRW-1800

TRW-1800

U-520

U-520

U-700

13-700

0-700

U-710

U-710

1150

1100

1150

1100

1150

1000

1150

1100

1150

1150

1100

1150

1100

1150

1100

1150

1000

1100

1150

1000

1100

1150

1000

1100

1150

1100

1150

1100

1150

1000

1100

1150

1100

1150

4.98482

9.53126

34.93413

0.32934

1.59019

0.40851

1.64002

3.44588

8.21391

33.14362

37.40245

60.76452

6.85409

14.91077

3.02273

9.78363

6.00136

45.00908

314.84732

0.09700

0.56735

4.64408

0.05600

0.10650

0.91201

0.73097

3.69020

31.64828

55.97576

1.30707

6.96226

29.63467

33.75592

48.91026

4.22766

16.23865

34.81770

0.43451

1.86423

0.80131

15.90560

3.38532

14.63356

49.25496

33.01795

67.99076

12.29986

30.55272

2.86913

12.35521

5.29724

66.84979

151.56540

0.07279

0.70713

2.87144

0.03252

0.26918

1.19591

1.24753

3.55140

16.21437

32.47507

0.97578

6.64431

15.18273

26.89057

48.23917

2.69280

8.63530

19.84710

0.35330

1.37760

0.40710

7.43090

2.28170

12.40500

38.79820

20.00150

50.70860

8.85880

24.49300

2.06020

6.85800

2.84800

68.24000

282.51901

0.02520

0.52440

2.05340

0.03230

0.53650

1.88630

0.87460

2.34160

17.25930

33.32080

0.76570

5.42470

13.02350

20.20680

41.19590



Alloy Temperature, Ka Ka
*C (Observed) (NeuralNet)

K a

(Regression)

U-720

U-720

U-720

Waspaloy

Waspaloy

Waspaloy

WAZ-20

WAZ-20

MAR-M-509

MAR-M-509

W-152

W-152

W-152

X-40

1000

1100

1150

1000

1100

1150

1100

1150

1100

1150

1093

1100

1150

1100

6.38851

32.33329

41.57671

4.99862

9.62941

28.89349

21.14707

89.21751

25.42729

49.77372

47.03811

45.28975

120.57302

35.57131

5.16179

23.74652

43.54115

3.30446

18.38443

36.43763

32.38919

91.72762

37.99707

62.82031

16.46076

20.17901

71.84557

25.85235

3.92420

19.29180

39.33060

3.70670

15.17910

28.51700

15.08830

82.03130

25.66680

38.77640

16.11080

54.95520

95.14120

24.45800
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TABLE L--RESULTS OF PREDICTING Ka VALUE FOR NASAIR-100 ALLOY

Temperature, *C 1150 1200

K,(Observed) 0.7645 1.0865

K,(Regression) 0.2684 0.7554

Ka(NeuralNet) 0.8937 0.9347

TABLE II.-GENOCOP SOLUTION POINT AT 1100 °C

Element Weight percent

Ni 70.0552444

Co 5.03954935

Cr 9.97962761

AI 3.30380297

Ti 1.36296296

Mo 0.84048849

W 2.05709577

Cb 2.99739814

Ta 3.91278195

C O.13449860

B 0.00077937

Zr 0.30375364

Hf 0.00200379

V O.0000000O

Re 0.00000000

Cu 0.00000000



TABLE III.--CONSTRAINTS USED IN OPTIMIZATION

Lower limit Element Upper limit

1100 °C Temperature 1100 °C

5O Ni 100.0

0 Co !0.0

0 Cr 15.0

0 Al 6.0

0 Ti 2.0

0 Mo 2.0

0 W 4.0

0 Cb 3.0

0 Ta 8.0/

0 C 0.5

0 B 0.1

0 Zr 1.0

0 Hf 1.0

0 V 0.0

0 Re 0.0

0 Cu 0.0

SuperaUoys
historical
data

Cyclic oxidation
values

Constraints _ ]

Neural
networks

Genetic

optimization

Objective function

b

Component
combinations

for a superalloy

Figure 1 .----Outline of neuro-genetic system.
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